首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   120篇
  国内免费   200篇
航空   565篇
航天技术   173篇
综合类   38篇
航天   418篇
  2024年   2篇
  2023年   54篇
  2022年   84篇
  2021年   103篇
  2020年   75篇
  2019年   63篇
  2018年   47篇
  2017年   10篇
  2016年   53篇
  2015年   45篇
  2014年   82篇
  2013年   101篇
  2012年   83篇
  2011年   99篇
  2010年   38篇
  2009年   52篇
  2008年   26篇
  2007年   55篇
  2006年   33篇
  2005年   9篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   36篇
  2000年   11篇
  1999年   20篇
排序方式: 共有1194条查询结果,搜索用时 307 毫秒
981.
The flutter and post flutter of a two-dimensional double-wedge lifting surface with combined freeplay and cubic stiffness nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes have been analyzed. In addition to the structural nonlinearities, the third-order piston theory aerodynamics is used to evaluate the unsteady non-linear aerodynamic force and moment. Such model accounts for stiffness and damping contributions produced by the aerodynamic loads. Responses involving limit cycle oscillation and chaotic motion are observed over a large number of parameters that characterizes the aeroelastic system. Results of the present study show that the freeplay in the pitching degree-of-freedom and soft/hard cubic stiffness in the pitching and plunging degrees-of-freedom have significant effects on the LCOs exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by physical structural parameters, such as the radius of gyration and the frequency ratio, especially in post-flutter regimes, when accounting for all system nonlinearities. It has been shown that at high Mach numbers the non-linear aerodynamic stiffness yields detrimental effects from the aeroelastic point of view, while the damping one do not.  相似文献   
982.
Based on the concept of approximating antenna surfaces using flat facets or triangulated cable networks, a geometric scheme to subdivide a parabolic surface is discussed. According to the proposed scheme, the paraboloid is divided at the aperture circle into six equal segments first, which form a regular hexagon. Then the regular hexagon is subdivided into equal regular triangles to form subelements. Finally, the points of intersection of these triangles are projected or mapped on the paraboloid surface using a suitable origin of coordinates to obtain the final nodal coordinates of the members along the revolution axis direction. An expression for the relation between the systematic deviation of the actual surface from the desired surface and the side length of the regular triangles on the antenna's aperture surface is developed, which can be used to determine the side length of the regular triangles, and in turn to determine the size of the reflector surface facets necessary to meet antenna surface accuracy requirements. Application on a 0.6-m offset reflector is described and the simulation results demonstrate the effectiveness of the proposed technique in design of paraboloidal reflectors with flat facets.  相似文献   
983.
This paper studies the autonomous navigation method for a group of satellites based on relative position measurements, which can be obtained by using inter-satellite links for measuring relative range and navigation star sensors for measuring relative bearing. For the satellites that are far from each other, it may be difficult to obtain relative bearing measurement due to poor visibility. To address this difficulty, this paper proposes a novel scheme, where three satellites, whose relative ranges are rather small such that the relative bearings can be observed, are used as beacons for the navigation of the other satellites that are invisible. The feasibility of the proposed navigation scheme is analyzed by using the Cramer-Rao lower bound (CRLB), with the consideration of the availability of relative bearing measurements. In addition, the multiple model adaptive estimation (MMAE) algorithm is adopted to improve the convergence speed of the estimator in the presence of large initial errors. Simulation results illustrate the high performance of the proposed scheme.  相似文献   
984.
The three-dimensional coupled implicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation standard kε turbulence model has been employed to numerically simulate the cold flow field in a typical cavity-based scramjet combustor. The numerical results show reasonable agreement with the schlieren photograph and the pressure distribution available in the open literature. The pressure distribution after the first pressure rise is under-predicted. There are five shock waves existing in the cold flow field of the referenced combustor. The first and second pressure rises on the upper wall of the combustor are predicted accurately with the medium grid. The other three shock waves occur in the core flow of the combustor. The location of the pressure rise due to these three shock waves could not be predicted accurately due to the presence of recirculation zone downstream of the small step. Further, the effect of length-to-depth ratio of the cavity and the back pressure on the wave structure in the combustor has been investigated. The obtained results show that there is an optimal length-to-depth ratio for the cavity to restrict the movement of the shock wave train in the flow field of the scramjet combustor. The low velocity region in the cavity affects the downstream flow field for low back pressure. The intensity of the shock wave generated at the exit of the isolator depends on the back pressure at the exit of the combustor and this in turn affects the pressure distribution on the upper wall of the combustor.  相似文献   
985.
Inner-Formation Gravity Measurement Satellite System (IFGMSS) is used to explore the Earth gravity using two satellites in an inner-formation flying mode. To fulfill the mission, relative position of the two satellites is required to be zeroed and attitude of the outer satellite should be stabilized in real-time. This paper proposed an integrated control scheme for the IFGMSS, and the main idea is to use only thrusters to control the relative position and attitude. The integrated control loop contains a control law's module and a control allocation law's module. The control law based on the feedback linearization method makes nonlinear dynamics counteracted and uses PD control law to reformulate the dynamics into a linear form. The integrated control allocation law is designed to assign the commanded control force and moment to each thruster dynamically. We transfer the control allocation problem into a linear programming (LP) problem and use the Optimal Theory to calculate the corresponding thrust of each thruster. Finally, an IFGMSS mission is simulated, where the two satellites fly in a circle orbit with a 300 km's altitude. Results using the integrated control scheme and the traditional separated control scheme are compared and analyzed. It has been found that the integrated control scheme is superior to the separated control scheme in output ability, level of redundancy and fuel cost.  相似文献   
986.
OLTARIS (On-Line Tool for the Assessment of Radiation In Space) is a space radiation analysis tool available on the World Wide Web. It can be used to study the effects of space radiation for various spacecraft and mission scenarios involving humans and electronics. The transport is based on the HZETRN transport code and the input nuclear physics model is NUCFRG. This paper describes the tools behind the web interface and the types of inputs required to obtain results. Typical inputs are mission parameters and slab definitions or vehicle thickness distributions. Radiation environments can be chosen by the user. This paper describes these inputs as well as the output response functions including dose, dose equivalent, whole body effective dose equivalent, LET spectra and detector response models.  相似文献   
987.
采用喷射成形Al-Zn-Mg-Cu系超高强铝合金制造了T型接头锻件,利用Deform软件对成形过程中的温度场及材料的流动状态进行分析,并进行了试验验证,获得了合理的锻造工艺与最佳的热处理工艺,分析了成形后零件的力学性能。  相似文献   
988.
《Acta Astronautica》2009,64(11-12):1283-1298
Upcoming National Aeronautics and Space Administration (NASA) mission concepts include satellite arrays to facilitate imaging and identification of distant planets. These mission scenarios are diverse, including designs such as the terrestrial planet finder-occulter (TPF-O), where a monolithic telescope is aided by a single occulter spacecraft, and the micro-arcsecond X-ray imaging mission (MAXIM), where as many as 16 spacecraft move together to form a space interferometer. Each design, however, requires precise reconfiguration and star tracking in potentially complex dynamic regimes. This paper explores control methods for satellite imaging array reconfiguration in multi-body systems. Specifically, optimal nonlinear control and geometric control methods are derived and compared to the more traditional linear quadratic regulators, as well as input state feedback linearization. These control strategies are implemented and evaluated for the TPF-O mission concept.  相似文献   
989.
Aristotelian assertive syllogistic logic (without modalities) is embedded in the author’s Lingua Cosmica. The well-known basic structures of assertions and conversions between them in this logic are represented in LINCOS. Since these representations correspond with set-theoretic operations, the latter are embedded in LINCOS as well. Based on this valid argumentation in Aristotle’s sense is obtained for four important so-called perfect figures. Their constructive (intuitionistic) verifications are of a surprisingly elegant simplicity.  相似文献   
990.
This paper addresses the topic of damping of the spin dynamics of a spatial debris orbiting around the Earth. Such debris, which can consist of parts of heavy launchers such as the Ariane rocket under consideration in this article, are impacted by torques generated by eddy currents as their conducting non-ferromagnetic body orbits through the Earth magnetosphere. Several previous works have focused on describing this induction phenomenon and have proposed analysis of empirical observations of this particular and important effect which has attracted much attention since the number of spatial debris has emerged as a problem for the future of space programs, especially in low orbits. In this paper, we present a relatively comprehensive modeling of the induction phenomenon, by means of Maxwell's equations inside the conducting and non-ferromagnetic body. Through the generalized Ohm's law, we show how one can obtain a partial differential equation with Neumann's boundary conditions problem that, once solved, e.g. through a finite elements method, yields the values of induced currents and braking torques. The case of a depleted upper stage of a heavy launcher, having a cylindrical shape and thin walls is particularly studied. We show a methodology to estimate the decay-rate of the spinning velocity, which is proven to satisfy a first-order asymptotically stable linear dynamics. Special cases consisting of typical orbit of space debris are treated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号